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Abstract-Computer programs are described which generate
calibration curves for TEo.Pand TMwo cylindrical microwave cavities
used in plasma diagnostics. The programs provide data for electron
densities well above those at which perturbation theory fails, and
can be used for any specified variation of electron density with radius.

I. INTRODUCTION

I

T HAS BECOME commonplace to measure elec-

tron number density and collision frequency in a

plasma by observing the effect of the plasma on the

resonant frequency and Q of a cylindrical microwave

cavity. This technique was first reported by Brown et al.

[1]- [3] and has since been extended by many authors.

We refer to just two of the most recent works [4], [5]

whose bibliographies provide an entry to the earlier

literature, and to one particularly lucid elementary

introduction to the method [6].

It is the purpose of this paper to describe computer

programs of broad applicability to allow those who are

interested in applying this valuable diagnostic tech-

nique to accurately calibrate their cavities without

spending undue time developing their own programs.

Part II of this paper presents complete tested computer

programs for this purpose.

The simplest way to generate a calibration curve for

a microwave cavity, and for that reason probably the

one most often used, is Brown’s original method—

perturbation theory. A disadvantage of perturbation

theory, however, is that it is valid only for relatively

small frequencies (say UP <a for TM 010 cavities, or

OJP< 10a for TEO1l cavities). The literature contains the

results of many numerical calculations and special-case

analytic solutions designed to produce curves valid at

higher densities; of late, these solutions have become
increasingly general in their range of applicability [4],

[5].

In this paper we wish to illustrate that for cylindrical

plasmas whose only density variation is radial, in the

absence of any magnetic field, the simple method of

expanding the electric field within the plasma in a power
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series leads to relatively fast computer generation of

calibration curves for TEoWO and TM~,O cavity modes

for almost any physically realizable radial density dis-

tribution.

Although this method should be applicable to a

variety of cylindrically symmetric geometries, we have

chosen to analyze the one particularly common arrange-

ment (see Fig. 1). For this case, we present tested com-

puter programs in Part II so that the method can be

used without several man-months of preparation. The

programs are written in the widely available Fortran IV

language, and are documented thoroughly enough to

make further development by the user a possibility.

The following restrictions must be taken into ac-

count.

1) Cavity Q and collision frequency are neglected in

the analysis, although a straightforward method of deal-

ing with them is suggested.

2) We do not explicitly calculate the effects of the

large holes in the cavity where the plasma tube enters.

This should cause errors of under 10 percent in the

TM Olo mode if the ratio of cavity length to plasma

radius exceeds four [7], and should be still less serious
for TE modes, whose E-fields do not terminate on end

walls and which are, in any event, weak near those

walls.

3) We present programs to deal only with the TEofiP

and TM Owomodes; extension of the TM program to the

more general TM~no case should be merely time-consum-

ing, not difficult.

4) The programs are written to handle only densities

up to (OJp2/OJ02) = 1000. This restriction can be eliminated

by changing one card in each program, but at an in-

creased risk of finding spurious solutions.

5) The largest mode order accepted is 20. This

restriction could be removed, if there were ever reason,

by some attention to scaling of parameters to avoid

computer overflow.

II. MATHEMATICAL DEVELOPMENT

We begin with the inhomogeneous time-independent

wave equation,

V(VOE) – V2E = ; n2E (1)

where n is the refractive index. For simplicity, we wish

to decouple the vector equation, (l), so as to obtain a
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Fig. 1. Cavity geometry.

scalar equation in one component of E. We use Max- frolm curl E= – B, which leads to

well’s equation for VX H to write

O = V. (V x H) = jLMO(E.Vn2 + T~2V.E). (2)
1 1 d(xE)

Hz=–———
jWqO x dx

(9)

If we now restrict ourselves to cavity modes having

no radial E-field component (TEOnP or TM~nO) and where ~ = ~po/eo. (Hr exists but is not needed in the

require that the only gradients in n2 be radial, (2) indi- calculation.) We begin by solving (8) in the outer

cates that V, E = O. Then (1) simplifies to the time- annulus, Q <x <P, subject to the boundary condition

independent Helmholtz equation E = O at the outer wall, x =P. In this region, n2 = 1, and

(8) has the well-known solution

V2E -1- g n2E = O.
C2

(3) -E(#) = A [J,(hlaj – c, Y,(ho*) ]

For TEO.P modes in cylindrical cavities, we anticipate
where

JI(izoP)

E =20 + $E(r) sin ~ + ;0. (4) c’ = Y,(130P)

and
Then, using the vector Laplacian in cylindrical co-

ordinates [8], (3) becomes p’n-z
IZ0’=W2 —-.

Q2
d2E 1 dE

[

p’rz
~+;y+ $n2– — 1

0L E=O. (5) Then (9) gives12 – ~z

We normalize this equation by measuring all lengths

in terms of the free-space wavelength AO of the unper-

turbed cavity resonance Uo.

The dimensions of the cavity under discussion, and

their normalized equivalents, are shown in Fig. 1. We

also define a normalized frequency as

(lo)

(11)

(12)

(13)

In the region occupied by the glass tube, R <x < Q,

the fields are again a linear combination of J1 and Yl,

but the refractive index of n, alters the arguments of

the Bessel functions. As a boundary condition, we re-

quire that the ratio of E to H at the glass--air interface

x = Q match the ratio obtained from (10) and (13). The

result is

~o

The normalized equivalent of (5) is
H=– ~-. [Jo(kxT) + c, Yo(k,x)] (15)

~2~ 1 dE

.[ 1

p%r’ 1 ~=o
~i+.; z+ W2,12–.. –-––.. (8)

Wh We

Sz X2
63 ~ c,Jo(h3Q) – Jl(h3Q)

Once (8) has been solved for E, we may obtain H, Y1UZ3Q)– C2Yo(~@)
(16)
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and

/28 .T,(/zoQ) – c, V,(h,(l)
G2LJ— (17)

h, YO(hOQ) – c1Y,(LOQ) “

We next solve for the fields in the plasma x ~ R. In

this region, the refractive index is related to the plasma

frequency

where

(19)

In the plasma-filled region, (8) becomes

d2E 1 dE

[ 1~+;=+ ho2– WP2–; E=O. (20)

We now assume that the radial distribution of elec-

trons in the tube is given by an arbitrary even power

series, d~, whose coefficients are to be provided by the

experimenter.

For convenience in programming, we also define a pro-

portional series g~.

m /.. \2mupf7p2=~gm< ,
gO = wp~axi.1. (22)

m=o

This approach is suitable for electron density distribu-

tions that are commonly expected, such as the zero-

order Bessel function for diffusion-dominated plasmas

or the uniform distribution for recombination-dom-

inated plasmas. The assumed distribution will be based

on the experimenter’s best estimate of the dominant

processes in the plasma. For more complicated assumed

distribution, attention would have to be paid to the

convergence of the series.

It will sometimes be desirable to test a hypothesis

about the distribution shape by observing whether

measurements in several different modes (which sample

different parts of the plasma most strongly) give con-
sistent density measurements. Several different distri-

butions can be tested to obtain maximal consistency.

An example of this approach will be given later.

we next assume that in the plasma E may be ex-

panded in powers of x. Substituting a power series for E

in (20) we find the solution

(23)

(2’++”2TP,*=0,1,2, ,25,
TP~I = . ..O

4fi2 + 12P + 8

(Note that T, is denoted as T(N) in the computer pro-

gram.)

It should be mentioned in passing that the normaliz-

ing factor R2P in (23) had to be inserted to eliminate an

underflow problem. When the series for E was written as

E = ~ tPx2P+1 (26)
p=o

the tP rapidly became too small for our computer to

handle. At x = R, we equate the two expressions for E/H

derived from (14), (15), and (23), (24). This eliminates

the unknown constant F, and leads to the equation

c4jj (2P+ 2)TP = ~ TPR (27)
,=0 p=o

where

Ji(h~R) + C,Tl(h3R)

“ = h,[Yo(h,R) + C,Vo(h,R)] “
(28)

We manipulate (27) into a form convenient for numer-

ical solution:

ZFUNC = ~ TP(2C4(P + 1) – R) = O. (29)
p=“

It maybe observed from (25) that the T, depend on the

frequency parameter ho and on go, the axial value of

TVpz. The method of solution is to choose a frequency

and then vary go until ZFUNC = O.

The procedure for TMo~o modes is exactly parallel to

the TE case just considered. The normalized equation

to be solved is

d2E 1 dE

~+;~+W2n2E=0”
(30)

The series expansions for E and H in the plasma are

E=

H=

(31)

(32)

The computational problem to be solved is

m

ZFUNC = ~ TP[R – 2@4] = O (33)

where

k, =

k~ =

‘=0

.70(ngWR) + k, Yo(ngWR)
— (34)

n, W [Jl(ngWR) + k~ I’l(ng WR) ]

(35)
where TO is arbitrary and
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Jo(W’Q) – k, YO(T7Q)
(36)

“ = I,(WQ) – h Y1(JV(?)

JO(W#)
kl =

Y,(wp)
(37)

TO = arbitrary

T+,=(W’-FW2TP
P

R2. (38)
4(p + 1)’

Note that although we have dealt only with TM ~.O

modes, it would be straightforward to extend the calcu-

lation to deal with the more general TM~nO case, We

would anticipate

E = ~0 + $0 + .2E(r) cos m~

and would have, in place of (30),

II 1. THE PROGRAMS

Two very similar programs have been written:

TECAV to treat TEO.P cavity modes, and TMCAV to

deal with TMO.O modes. The program listings and the

data card specifications appear in Part II. Some com-

mentary on TECAV will be given here to make use and

further development of the program easier. Essentially

identical comments apply to TMCAV.

Input Data (Ccwds 240-580)

Real cavities differ in many respects from the ideal

described mathematically above; there are holes for the

glass tube to pass through, there are coupling loops or

probes in the cavity, the walls are neither perfectly uni-

form nor perfectly conducting, etc. In order to make the

mathematics approximate the behavior of the real

cavity, calculations are carried out not for the precise

dimensions of the real cavity, but rather for the slightly

different “effective” dimensions of a mythical perfect

cavity which matches the resonant frequencies of the

real cavity under three specified conditions. FWG is the

measured resonant frequency, in the absence of plasma,

of the mode in which the cavity will be used for plasma

measurements. F1 is the frequency of the same mode

with the glass tube removed; and F2 is the frequency of

any other identifiable TEO.O mode, also with the tube

removed.

Note that the series d~ (called DDISTR in the pro-

gram) which represents the assumed shape of the elec-

tron-density distribution, allows only even powers of

(x/l?). Thus the first term of the series multiplies

(x/l?)”, the second, (x/12)’, etc. This suffices for the

representation of any physically possible distribution,

because we can require WP2(x)= WP2( – x) without in

any way restricting the behavior of WPZ in the real-

world regime x >0. Note, too, the requirement that the
series be normalized so that its first term is 1.0.

25

Ef ective Length and Radius of Cavity (Cards 600-650)

The resonant freque~cy of an empty TEO.P cavity of

length 1 and radius a is

(39)

where J1. is the nth root of J1. Given the frequencies FI

and F2 of two identified modes, we can therefore solve

for effective values of 1 and a.

Print Input Data (Ca~ds 670-860)

Check the printout to ensure that all data were cor-

rectly entered and that the effective length, and radius

are close to the real ones. If the effective values are far

from the true ones, the mathematical model used is

probably invalid for this cavity.

Compute Normalized Cavity Dimensions, l-hen Compute

and Print Refractive Index of Glass (Ca~ds 970–1230)

The program seeks the value of na which accounts for

the shift in frequency from F1 to FWG when the glass

tube is inserted in the cavity. This is done by using sub-

routine ROOT to find the value of no which makes

ZFUNC = O under the assumptions W= FWG/Fl and

Wg’= O. For this one segment of the program it is con-

venient to set the normalization frequency tio to 2~. F1.

(For the remainder of the calculations, frecluency will be

normalized to FWG. ) The printed result of the refrac-

tive index calculation should be close to the value

usually measured for the variety of glass used, Typical

microwave frequency refractive indices of glass are

near 2.

Perturbation-Theory Solution (Cards 1330-1690)

A low-density asymptote is provided by perturbation

theory [6] to check the exact calculation A Simpson’s

rule integrator, S1 MPQ, is used to evaluate

(40)

2
J

EEOZdv

with the temporary assumption (~p–axial/~~i))2 = 1. Then,

for low densities,

AU

()

@p–axial 2
—.

YP . (41)
@o @o

The fields are obtained by the same process of matching

at boundaries used above for the exact calculation,

except that a simple Bessel-function field appears in the

central region.

E. = JI(/zox) ,

E. = c~[J,(haz)

EO = cBIJI(kox)

x<R (42)

+ c, Yl(h3x)], R:<x<Q (43)

— cl Yl(hoz)], Q:<x<P (44)
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(o)

Fig. 2. Illustration of the way in which a high-order field distribution can cause an incorrect low value to be found for WMAX, the normal-
ized resonant frequency at infinite electron density. Also either Fig. 2(a) or (b) illustrates an initial field distribution that will cause
perturbation theory to predict too small a frequency shift for a given density. (a) No plasma. (b) E(R)= O. W< WMAX. (c) E(R)= O.
W= WMAX,

WMAX

@&J r PERTURBATION
OJo THEORY

Fig. 3. Example of calibration curve which can be produced by
initial field distribution such as that in Fig. 2(a) or (b). Note that
perturbation theory predicts too small frequency shift for low
densities.

where

(45)

(46)

Although the exact calculation usually approaches

the perturbation-theory asymptote from below (as will

be shown later), for high-order modes it may occa-

sionally approach from above. Consider a cavity whose

field distribution without plasma looks like Fig. 2(a).

As the plasma density increases and forces the fields out-

ward, the integral of EE2 in the glass will decrease. Thus

the denominator of (40), which uses the unperturbed

field, will be too large, and the perturbation-theory

value of AU will be smaller than the exact value. The

resulting situation is shown in Fig. 3.

Main Loop (Cards 1770–2310)

Equation (29) is solved for ~p2–=Xi.l/ti02 at each of

NINT uniformly spaced frequencies between FWG and

FRANGE. The first frequency chosen is FREQ = FWG

+ (FRANGE-FWG)/NINT and the last is FREQ
= FRANGE. If no root can be found, the calculation

terminates. This condition will most often be due to the

specified frequency shift exceeding the value that would

result from infinite plasma density, or approaching it

close]y enough so that (~p_,Xi91/oOz) >1000.”

For each frequency specified, subroutine ROOT

varies the normalized axial plasma frequency [g. in

(22), called G(1) in the program] until ZFUNC = O.

Subroutine ZEROTE is used to compute ZFUNC.

If K different plasma-distribution shapes have been

specified by the input data, this root-finding procedure

is carried out K times at each frequency.

Compute and Print WMAX (Cards 2330-2470)

As a check on the exact calculation of frequency shift

versus plasma density this program segment calculates

the frequency shift when the plasma is replaced by a

perfectly conducting post. From (14), it can be seen

that the condition E(R) = O requires

J,(M) + C, Y,(i%,I?) = O. (47)

Subroutine CCO MP calculates the value of the left side

of (47) for any given W, and subroutine ROOT is used

to vary W until, at the solution WMAX, the value

comes out O. WMAX should be the high-density asymp-

tote of a plot of (aPz/002) versus (m/ao); this will be

illustrated in Fig. 5.

Fig. 2 illustrates a difficulty which arises in this pro-

gram segment when high-order modes are being consid-

ered. The boundary condition E(R) = O can be met for

frequencies substantially below WMAX; i.e., for non-

infinite conductivities. To avoid these spurious solutions

to (47) it is necessary to estimate rather closely the

region in which the true root should be sought.

An upper limit to the region is obtained by treating

the space between the plasma post and the cavity wall

as a two-dimensional box whose resonances can be com-

puted simply:

(48)

where w is the width of the box (the distance from the

plasma post to the cavity wall) and L its length (equal

to the length Z of the cylindrical cavity), If N1 is the

radial order of the mode being studied and PI its longi-

tudinal order, the upper limit used will be ~(~1+1) ,PI.

The region’s lower limit is taken as the highest fre-
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Fig. 4. Illustration of some disagreeable properties of ZFUNC.

quency for which the main loop of TECAV was able to

find a corresponding electron density. If the control

data supplied to TECAV specify a small value for

FRANGE, this lower limit may not be stringent

enough; a false root may occasionally be found, as ill us-

trated in Fig. 2.

End-of-Program Roakine (Cards 2490-2550)

After all requested data points have been computed,

the program returns to its beginning to seek another set

of data cards. This feature can be used to calibrate more

than one cavity on a given computer run, to calculate

data points for one given cavity with variable spacing

(e.g., every 10 MHz for the first 200 MHz, then every

50 MHz for the first 1000 MHz), or to handle more than

the allowed five different plasma-distribution shapes. If

the program finds no additional data cards, it prints a

message and stops.

Subroutine ROOT (Cards 2570-3650)

For any given function (computed by the arbitrary

subroutine SUB R), ROOT seeks a value of the abscissa

PARAM which reduces the absolute value of the func-

tion below a specified size. The routine begins by search-

ing from BOTTOM to TOP for two values of PARAM be-

tween which the computed function changes sign; then

homes in on the root by a binary search. The methods

used are inelegant and rather slow, but they generally

work despite the inhumane behavior of ZFUNC.

To understand the difficulties which this routine

faces, consider the sketches in Fig. 4, which illustrate

that the root of ZFUNC is often preceded by a pole. To

a routine which simply looks for a sign change between

two values of the abscissa, a simple pole and a root are

indistinguishable. ROOT therefore tests successive

ordinate values near a supposed root (cards 3380–3410)

and rejects as poles the cases in which the ordinate in-

creases in magnitude as the ‘iroot” is approached, If a

pole is found, the subroutine makes one more attempt

to find a true root before giving up (cards 3430–3600).

The first problem illustrated by Fig. 4(b) is that the

true root of ZFUNC often lies very close to a pole. If

the initial search for two abscissas, between which

ZFUNC changes sign, is conducted by stepping in large

intervals from BOTTOM to TOP, the sign change at the

desired root can be missed entirely and the program

winds up locating the false root instead. The 64-point

initial search pattern used in TECAV’S subroutine

ROOT (cards 2810–2900) usually suffices to avoid this

difficulty. At large frequency shifts or for high-order

modes, the routine does occasionally fail.

To cope with this problem, we have provided in

TMCAV an alternate, interchangeable version of

ROOT (cards TM 2220–3010) which conducts its initial

search for a sign change by scanning from BOTTOM to

TOP in 4096 steps. A scan this small is time consuming

(total program time typically goes up by a factor of 2

to 4), but very rarel y misses a root.

A false root can generally be detected in the output

data by a discontinuous jump in a plot of log (WP2/ti,2)

versus log (Au/uO), or a failure of the plot to approach

the perturbation-theory asymptote at small Aw.

Once a root has been isolated it is refined by binary

search (cards 32 10–3360). The dotted line in Fig. 4(b)

illustrates why more sophisticated techniques fail (in

this case Newton’s method); an attempt to approximate

the true root by fitting a tangent or a low-order poly-

nomial to a known segment of ZFUNC will often cause

a jump onto the wrong branch of the function. Methods

which avoid this jump by using starting values that

bracket the root generally seem to converge more slowly

than the binary search. We attribute this to the very

rapid approach of ZFUNC to zero when a pole is

nearby.

The variable IER is used by ROOT to signal the main

program if no root is found. The value clf IER is then

printed out by the main p~ogram. The most frequent

usage is the statement “IER = 17’ which appears in the

output list when the value of (tiP2/OJ02)exceeds 1000, and

is therefore outside the range being searched. Cards

2640–2680 detail the possible values of Il?R.

Subroutine ZEROTE (Cards 3670-4260)

This routine computes ZFUNC according to (29).

Enough terms of the infinite series are kept so that the

last two terms retained each contribute less than one

part in 100000 to ZFUNC. Several hundred terms may

be required for large frequency shifts and high-order

modes. Double-precision arithmetic must be used to
avoid intolerable roundoff error in such a long computa-

tion. Generally, of course, 15 or 20 terms of the series

are entirely adequate.

Since the amplitude of E is arbitrary in the calcula-

tion of resonant frequency, the value of TO is arbitrary.
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Fig. 5. Calibration curve for a typical TEon cavity. parameters of
the cavity and values of the power-series coefficients used to
represent the radial density variation are given in the data card
specifications. Points on curve are from the sample output.

The value of 10–30 has been selected to minimize the

number of occasions of computer overflow during the

calculation of the TP. If for a particular rare cavity

either underflow or overflow occurs, the values of the Tp
may be scaled by adjusting To (card 3840).

Note, in comparing the computer programs to the

mathematical derivations above, that Fortran’s peculi-

arities require our designating To as T(1) in the program.

Function BESSEL (Cards 4670-5870)

Because TECAV spends a lot of time computing Bes-

sel functions, it proved worthwhile to write a customized

routine instead of using IB M‘s general-purpose library

routine. The chief virtue of this subprogram is that it

does no unnecessary work when called upon for several

types of Bessel functions of the same argument. Its

accuracy is on the order of one part in 109.

Subroutine SIMPQ (Cards 5890-6220)

This routine integrates any given function by Simp-

son’s rule using a progressively finer grid of data points

until two successive computations differ by less than

one part in 106. If the integration has not reached this

accuracy by the time a 2048 point grid is used, the rou-

tine gives up, returns its latest computed approximation

to the integral, and sets an error signal.

IV. EXAMPLES AND APPLICATIONS

Fig. 5 shows the output of a computer run for a par-

ticular TEOII cavity. For this run we set FRANGE

=9698.5 MHz and NINT =50 MHz. Observe that the

exact calculation does approach the asymptotes pro-

vided by WMAX and perturbation theory. The job

took 29 s of real time to run on the University of Illi-

nois’ time-shared IBM 360/75, and cost 2.75 dollars. To

get this short operating time, it was essential to use an

efficient compiler (in this case I B M’s Fortran H, option

A

B

I I t I

100 200 300 400

TIME (/Asec)

Fig. 6. Electron density decay in an afterglow plasma in 10-torr
neo~. A. and B—TE ,and TM cavity data, respectively, assuming
a dlffuslon distrib.utlon. C—TE and TM cavity data assuming
a recombination distribution.

2, level 18) to prepare the object deck used, even at the

price of long compilation time. The importance of an

efficient object program becomes extremely clear for

high-order modes and large frequency shifts, which can

require several minutes to calculate 50 data points.

As shown in Fig. 5, calibration curves were generated

for two assumed electron-density distributions. If this

procedure is repeated for different cavity modes, then

by comparing the experimental frequency shifts ob-

served on different modes with the calibration curves,

one can, within reason, obtain a very good indication of

the plasma distribution. An example of this is shown in

Fig. 6 [9].

In this particular experiment it was desired to find the

form of the plasma distribution in a decaying afterglow

produced in 10-torr neon. Frequency shifts, as a func-

tion of time in the afterglow were recorded for TMOIO

and TEOll cavities, and the axial electron. density was

calculated from the calibration curves for two different

assumed distributions: the JO (diffusion-controlled) and

the uniform (recombination-controlled) distributions.

As can be seen from Fig. 6, excellent agreement was

obtained for an assumed uniform distribution, which

indicated that this plasma was recombination con-

trolled, as expected.

If the plasma distribution is reasonably well behaved,

then this approach is convenient and effective. A similar

approach has been examined by Kent et al, [1 O]. If,

however, the plasma is doing strange things, this tech-

nique would not work well. In general, of course, if the
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frequency shifts are known for a large number of cavity

modes, it would be possible to invert the data (similar

to Abel inversions) to obtain the distribution. This

technique is difficult to apply, however, and requires

some sophisticated analysis.

V. COLLISIONS

The programs described above assume a lossless

cavity and a collisionless plasma, approximations which

have thus far been adequate for our needs. If it proves

desirable to take collisions into account, it should be

straightforward to do this by using the definition of Q.

total energy stored in cavity
Q=2. (49)

energy lost per period

or

2U
s

eE2 dv

Q=

s
CEZ dv

(50)

If we use the Lorentz formula for the conductivity of a

plasma (Shkarofsky shows that the Lorentz formula

can be doctored to give useful results even if v depends

on velocity [11 ]), (50) leads to the formula

2c0
s

eE2 dv

0=.

s

Vm
WD2E2 dv

vm~ +- CIJZ

(51)

The appropriate fields to use here are not the unper-

turbed fields, but rather the “exact” fields available in

ZEROTE (or ZEROTM) as the series Tp. Spatial vari-

ation of v~ and WV2can easily be taken into account since

the integral would be performed numerically in any

event.

Several points must be argued to justify this ap-

proach. First, the addition of collisions must not result

in fields very different from the collisionless approxima-

tion. This is probably a reasonable assumption so long

as (v/w)2 <0.1. Second, we know that in the high-density

regime where these programs are most useful, the cavity

fields are significantly perturbed, which will change the

cavity losses due to wall resistivity and stray radiation.

However, a few sample calculations will show that

whenever densities are high enough to force a typical

cavity out of the perturbation-theory regime, the

plasma losses will generally be high enough to produce

large changes in Q and entirely mask other loss effects.

Third, it must be emphasized that (51) predicts un-

loaded Q. The effects of loading by the circuits coupled

to the cavity may change when high-density plasmas

perturb the fields. Changes in coupling must be ob-

served in order to correctly deduce unloaded Q under

dynamic conditions.

We offer, finally, a speculation about a simple but

unproven method of dealing with collisions, The per-

turbation-theory formula for Q corresponding to (40)

and (41), assuming collision frequency v~ to be position

independent, is [6]

() / s
EO(,0P2E02dv

A1=V” U —.

Q
(52]

COz+ V?nz

s
eEo2 dv

Combining this with (40) and (41 ) gives

(53)

so that v~ can be obtained from measurements of fre-

quency and Q without evaluating any inte~rals. We spec-

ulate that perhaps (53) or an equally simple formula

may continue to hold at high densities even though

neither AOJ nor A(l/ (Q) may be obtained from the

perturbation formulas. This would make it possible to

compute collision frequency with no recourse to numer-
ical integration, even at high densities.

VI. CONCLUSIONS

A description and listing are given for computer pro-

grams that provide efficient accurate calibration curves

for microwave cavities used in plasma diagnostics. The

program is based upon the exact solution of Maxwell’s

equations, and so can take into account the effect of the

discharge tube and can provide accurate plots of res-

onant frequency versus plasma density :for a range

from zero to essentially infinite electron density. These

plots can be made for fairly arbitrary dimensions of the

cylindrical cavity used and for a large variety of pos-

sible cavity modes, as well as for a large variety of pos-

sible plasma profiles within the discharge tube.

Although the computer program gives accurate re-

sults, some remarks are in order regarding the care that

must be taken in obtaining and interpreting the experi-

mental results, as well as some of the common problems

that occur in the use of this technique. First of all, the

accuracy in determining the plasma density depends

greatly on the accuracy in determining the resonant fre-

quency of the cavity. For this reason it is essential that
the cavity Q be as high as possible and the discharge

tube be made of low-loss glass (quartz or 7070 Pyrex).

The effect of small errors in the frequency shift can be

especially severe for large plasma densities, as can be

clearly seen in Fig. 5. Another problem that occurs at

large electron densities is that this is also quite often the
region of high electron-collision frequency (electron–

ion as well as electron–neutral). This decreases the Q of

the cavity, broadens the resonance, and makes the

determination of the exact resonant frequency difficult.

In fact, if the collision frequency is high, tlhe resonances

may be completely washed out. Needless to say, this
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also suggests that considerable care must be taken in

coupling the cavity to the measurement system. A

tradeoff will have to be made to keep the coupling as

loose as possible to preserve the high Q while retaining

sufficient coupling to obtain a readable signal.

Microwave cavity techniques have been used widely

in pulsed (decaying afterglow) plasma studies where the

plasmas are usually quiet and well-behaved. If a plot of

density versus time in the afterglow is to be obtained,

then it is necessary that the plasma conditions be

repeatable from pulse to pulse. In dc discharges many

more problems arise. Due to the high electron temper-

atures, the collision frequencies in such discharges are

usually large and can wash out the cavity resonances.

Furthermore, the fluctuations, striations, etc., that are

commonly found in dc discharges, as well as the micro-

wave radiation directly into the cavity and the possible

excitation and interaction of plasma modes, can con-

tribute an excessive amount of noise to the detector sig-

nal and can make meaningful measurements impos-

sible. Under such circumstances, it is sometimes pos-

sible to crowbar off the discharge for a short period of

time, make measurements in the afterglow, and extrap-

olate back to the switch-off time to obtain estimates of

the plasma density.
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Automatic Digital Method for Measuring the

Permittivity of Thin Dielectric Films

MARIA A. RZEPECK& MEMBER, IEEE, AND M. A. K. HAMID, SENIOR ~MBER, IEEE

Absfract—One of the most promising techniques for measuring
the electric permittivity at microwave frequencies of thin dielectric
materials of the order of 0.1 to 10 ~, is the cavity perturbation
method. For thin films of this type, it is necessary to determine ac-
curately and dkplay small changes in the resonant frequency and Q
factor of the cavity in the presence of the materiaf sample.

A circuit for the simultaneous measurement and digital readout
of the resonant frequency and Q factor of microwave cavity is de-
scribed. For the resonant frequency measurement, a very efficient

automatic frequency circuit, with a homodyne modulation-detection

bridge and frequency stabilization loop, is applied. Theoretical
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analysis and experiments results with this circuit show that an ac-
curacy of 5X 10–7can be achieved in the resonant frequency mea-
surement.

For measuring the Q factor, two similar circuits are described.
The technique is based on measuring the phase shift of the envelope
of an amplitude modulated microwave signal when thhi signal is
transmitted through a resonant cavity at resonance. Although an
accuracy of 0.5 percent in the Q factor can be achieved, it is shown
that the main liiiting f actor in both circuits is the accuracy of phase
shift determination at RF frequencies.

I. INTRODUCTION

T
HE permittivity of thin dielectric films has been

of increasing interest due to its importance in the

properties of semiconductor thin films and inte-

grated circuits at microwave frequencies, More recently,

the properties of thin biological films have received con-


