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A Numerical Method for Calibrating Microwave
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Abstract—Computer programs are described which generate
calibration curves for TEqy, and TM s, cylindrical microwave cavities
used in plasma diagnostics. The programs provide data for electron
densities well above those at which perturbation theory fails, and
can be used for any specified variation of electron density with radius.

I. INTRODUCTION

T HAS BECOME commonplace to measure elec-
I[ tron number density and collision frequency in a

plasma by observing the effect of the plasma on the
resonant frequency and Q of a cylindrical microwave
cavity. This technique was first reported by Brown et al.
[1]-[3] and has since been extended by many authors.
We refer to just two of the most recent works [4], [5]
whose bibliographies provide an entry to the earlier
literature, and to one particularly lucid elementary
introduction to the method [6].

It is the purpose of this paper to describe computer
programs of broad applicability to allow those who are
interested in applying this valuable diagnostic tech-
nique to accurately calibrate their cavities without
spending undue time developing their own programs.
Part II of this paper presents complete tested computer
programs for this purpose.

The simplest way to generate a calibration curve for
a microwave cavity, and for that reason probably the
one most often used, is Brown's original method—
perturbation theory. A disadvantage of perturbation
theory, however, is that it is valid only for relatively
small frequencies (say w,<w for TMgy,e cavities, or
wp< 10w for TE,11 cavities). The literature contains the
results of many numerical calculations and special-case
analytic solutions designed to produce curves valid at
higher densities; of late, these solutions have become
increasingly general in their range of applicability [4],
[5].

In this paper we wish to illustrate that for cylindrical
plasmas whose only density variation is radial, in the
absence of any magnetic field, the simple method of
expanding the electric field within the plasma in a power
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series leads to relatively fast computer generation of
calibration curves for TEg., and TM, cavity modes
for almost any physically realizable radial density dis-
tribution.

Although this method should be applicable to a
variety of cylindrically symmetric geometries, we have
chosen to analyze the one particularly common arrange-
ment (see Fig. 1). For this case, we present tested com-
puter programs in Part II so that the method can be
used without several man-months of preparation. The
programs are written in the widely available Fortran IV
language, and are documented thoroughly enough to
make further development by the user a possibility.

The following restrictions must be taken into ac-
count.

1) Cavity Q and collision frequency are neglected in
the analysis, although a straightforward method of deal-
ing with them is suggested.

2) We do not explicitly calculate the effects of the
large holes in the cavity where the plasma tube enters,
This should cause errors of under 10 percent in the
TMo1o mode if the ratio of cavity length to plasma
radius exceeds four [7], and should be still less serious
for TE modes, whose E-fields do not terminate on end
walls and which are, in any event, weak near those
walls.

3) We present programs to deal only with the TEy,,
and TMg,; modes; extension of the TM program to the
more general T M. case should be merely time-consum-
ing, not difficult.

4) The programs are written to handle only densities
up to (w,2/we?) =1000. This restriction can be eliminated
by changing one card in each program, but at an in-
creased risk of finding spurious solutions.

5) The largest mode order accepted is 20. This
restriction could be removed, if there were ever reason,
by some attention to scaling of parameters to avoid
computer overflow,

II. MATHEMATICAL DEVELOPMENT

We begin with the inhomogeneous time-independent

wave equation,
2

w
V(V-E) — VIE = — n’E 1

¢
where # is the refractive index. For simplicity, we wish
to decouple the vector equation, (1), so as to obtain a
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scalar equation in one component of E. We use Max-
well’s equation for VX H to write

0 =V-(VXH) = jwe(E-Vn? + n’V-E).  (2)

If we now restrict ourselves to cavity modes having
no radial E-field component (TEg,, or TMyu.) and
require that the only gradients in #? be radial, (2) indi-
cates that V- E=0. Then (1) simplifies to the time-
independent Helmholtz equation

2

VIE + = nE = 0, @)
[

For TE., modes in cylindrical cavities, we anticipate

R . pwz
E=70+ d)E(r) s1n T + £0. (4)
Then, using the vector Laplacian in cylindrical co-
ordinates [8], (3) becomes

d*E 1 dE l:w2 , pir? 1

dr

— - —~]E=Q (5)
r dr ¢t ;2 7%

We normalize this equation by measuring all lengths
in terms of the free-space wavelength A of the unper-

turbed cavity resonance wy.

wo 27
r=—r=-—7.

- » (6)

The dimensions of the cavity under discussion, and
their normalized equivalents, are shown in Fig. 1. We
also define a normalized frequency as

M

The normalized equivalent of (5) is

72,9 p2ﬂ_2 1 ~
+[W~n~»~-52 ——|£=0. (8

x2

d*E

1 dE
dx?

x dx

Once (8) has been solved for E, we may obtain H,

Cavity geometry.

from curl E= — B, which leads to

1 1 d(zE)
dx

H,

9
iWno =% ( )

where 7 =1+/po/e. (H, exists but is not needed in the
calculation.) We begin by solving (8) in the outer |
annulus, Q<x <P, subject to the boundary condition
E =0 at the outer wall, x =P, In this region, n2=1, and
(8) has the well-known solution

E(x) = A[Jl(}lax) — (1 Yl(hox)] (10)
where
B J1(hoP)
T TP =
and
. . . P27r2
he> = W 5 (12)
Then (9) gives
A]lg
H(x) = — —— [Jo(hox) — c1Vo(hex)]. (13)
FWno

In the region occupied by the glass tube, R<x<Q,
the fields are again a linear combination of J; and Y3,
but the refractive index of #, alters the arguments of
the Bessel functions. As a boundary condition, we re-
quire that the ratio of E to H at the glass-air interface
x = match the ratio obtained from (10) and (13). The
result is

E = F[J1(hsx) + 5V 1 (k)] u@
2 )
H= — - []o(]lgx) + C3 Yo(hgx)] (15)
W
where
ot o(hsQ) — J1(hsQ) (16)

“=y 1(1:Q) — ¢2Y o(h30)
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and

o A hs ]1(/10@) —_ C1Y1(th) (17)
ho Jo(heQ) — ¢ Yl(th)

We next solve for the fields in the plasma x <R. In
this region, the refractive index is related to the plasma
frequency

=1—~W,2 (18)
where
2 1 /n.g2
szsw—p=—< ? ) (19)
w02 wo2 €0

In the plasma-filled region, (8) becomes
d?E 1 dE
—t——+ l:h02 —

We now assume that the radial distribution of elec-
trons in the tube is given by an arbitrary even power
series, d,, whose coefficients are to be provided by the
experimenter.

] % 2m
Wt = Wokiaxiar 2 dm <E> ,  do=1. (21)
m=0

1
W, — ﬁ] E=0. (20

For convenience in programming, we also define a pro-
portional series g.

© x 2m
Wp2 = Z Em (—> ] 8o = W;nz—-axial-

& I (22)

This approach is suitable for electron density distribu-
tions that are commonly expected, such as the zero-
order Bessel function for diffusion-dominated plasmas
or the uniform distribution for recombination-dom-
inated plasmas. The assumed distribution will be based
on the experimenter’s best estimate of the dominant
processes in the plasma. For more complicated assumed
distribution, attention would have to be paid to the
convergence of the series.

It will sometimes be desirable to test a hypothesis
about the distribution shape by observing whether
measurements in several different modes (which sample
different parts of the plasma most strongly) give con-
sistent density measurements. Several different distri-
butions can be tested to obtain maximal consistency.
An example of this approach will be given later.

We next assume that in the plasma E may be ex-
panded in powers of x. Substituting a power series for E
in (20) we find the solution

E = E E;z q2ptl (23)
1 d T,

H= —— D @2p+2) == a0 (24)
IWn0 p=o ? R

where Ty is arbitrary and

P
< Z Tp~mgm> — h’Ty
)

m=A0
Tpp1= =0,1,2,---. (25
P+l 4ﬁ2+12P+8 ? ’ ( )
(Note that T, is denoted as T°(N) in the computer pro-
gram.)

It should be mentioned in passing that the normaliz-
ing factor R?? in (23) had to be inserted to eliminate an
underflow problem. When the series for E was written as

0
E = )ttt

p=0

(26)

the ¢, rapidly became too small for our computer to
handle. At x = R, we equate the two expressions for E/H
derived from (14), (15), and (23), (24). This eliminates
the unknown constant F, and leads to the equation

C4 Z (ZP + Z)Tp = Z T,R (27)
p=0 p=0
where
J1(hR Vi(hsR
o = 1( 3 ) + cs 1( 3 ) (28)

Bl To(heR) + s VolhsR)]

We manipulate (27) into a form convenient for numer-
ical solution:

ZFUNC = 3, T,(2cs(p + 1) — R) = 0.
=0
It may be observed from (25) that the T, depend on the
frequency parameter %o and on g, the axial value of
W, The method of solution is to choose a frequency
and then vary go until ZFUNC=0.

The procedure for TM.o modes is exactly parallel to
the TE case just considered. The normalized equation
to be solved is

&@E 1 dE
— 4+ — —+WE = 0.
dx* x dx

(29)

(30)

The series expansions for E and H in the plasma are

Z e (31)
> Lo o, 32
- o ST 6
The computational problem to be solved is
ZFUNC = X To[R — 2pks] = 0 (33)

=0
where

Jo(n,WR) + ks Vo(n,WR)
Be = — (34)
T[T WR) + ks Vi(n,WR)]

By = kang ((n,WQ) — Jo(n,WQ) (35)
YO(WHWQ) — k2N, Yl("’ﬂWQ)
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_To(WQ) = kYo(WQ)

2 = 36
707Q) — ¥x(7Q) G0
_ Jo(Wp)
t Yo(Wp) G7)
Ty = arbitrary
( > Tyn) = WT,
Tor = Ap + 1) R (38)

Note that although we have dealt only with TM,,
modes, it would be straightforward to extend the calcu-
lation to deal with the more general TM,,,, case. We
would anticipate

E = #0 -+ $0 + 2E(r) cos m¢
and would have, in place of (30),

@E 1 dE m?
+ = —+[W2n2 ——2:|E — 0.

Ec; x dx x

ITII. THE PROGRAMS

Two very similar programs have been written:
TECAV to treat TE., cavity modes, and TMCAYV to
deal with TMjy,, modes. The program listings and the
data card specifications appear in Part II. Some com-
mentary on TECAYV will be given here to make use and
further development of the program easier. Essentially
identical comments apply to TMCAV.

Input Data (Cards 240-580)

Real cavities differ in many respects from the ideal
described mathematically above; there are holes for the
glass tube to pass through, there are coupling loops or
probes in the cavity, the walls are neither perfectly uni-
form nor perfectly conducting, etc. In order to make the
mathematics approximate the behavior of the real
cavity, calculations are carried out not for the precise
dimensions of the real cavity, but rather for the slightly
different “effective” dimensions of a mythical perfect
cavity which matches the resonant frequencies of the
real cavity under three specified conditions. FWG is the
measured resonant frequency, in the absence of plasma,
of the mode in which the cavity will be used for plasma
measurements. F1 is the frequency of the same mode
with the glass tube removed; and F2 is the frequency of
any other identifiable TE,,, mode, also with the tube
removed.

Note that the series d,, (called DDISTR in the pro-
gram) which represents the assumed shape of the elec-
tron-density distribution, allows only even powers of
(x/R). Thus the first term of the series multiplies
(x/R)" the second, (x/R)?, etc. This suffices for the
representation of any physically possible distribution,
because we can require W,2(x)=W,2(—x) without in
any way restricting the behavior of W,? in the real-
world regime x> 0. Note, too, the requirement that the
series be normalized so that its first term is 1.0.

25

Effective Length and Radius of Cavity (Cards 600-650)

The resonant frequepcy of an empty TE,, cavity ol
length / and radius ¢ is

2 ] " 2
P/ (1) +(2)
2 ! Ta
where Jy, is the nth root of J;. Given the frequencies F1

and F2 of two identified modes, we can therefore solve
for effective values of / and a.

(39)

Print Input Data (Cards 670-860)

Check the printout to ensure that all data were cor-
rectly entered and that the effective length and radius
are close to the real ones. If the effective values are far
from the true ones, the mathematical model used is
probably invalid for this cavity.

Compute Normalized Cavity Dimensions, Then Compute
and Print Refractive Index of Glass (Cards 970-1230)

The program seeks the value of #, which accounts for
the shift in frequency from F1 to FWG when the glass
tube is inserted in the cavity. This is done by using sub-
routine ROOT to find the value of %, which makes
ZFUNC =0 under the assumptions W= FWG/F1 and
w2=0. For this one segment of the program it is con-
venient to set the normalization frequency w, to 2m- F1.
(For the remainder of the calculations, frequency will be
normalized to FWG.) The printed result of the refrac-
tive index calculation should be close to the value
usually measured for the variety of glass used. Typical
microwave frequency refractive indices of glass are
near 2. /

Perturbation-Theory Solution (Cards 1330-1690)

A low-density asymptote is provided by perturbation
theory [6] to check the exact calculation. A Simpson’s
rule integrator, SIMPQ, is used to evaluate

wp2
——E¢* dv
wQZ

ry= — (40)
2feE02 dv

with the temporary assumption (wp—axia1/we)?= 1. Then,
for low densities,

Aw Wp—axial 2
— =1,{ .
Wo Wo

The fields are obtained by the same process of matching
at boundaries used above for the exact calculation,
except that a simple Bessel-function field appears in the
central region.

(41)

E; = Ji(hox), x <R (42)
Eo = cs|J1(hax) + ¢:Vi(hsx)], R<x<Q (43)
Eo = Ca[Jl(hgx) - 01Y1(lzox)], Q S X S P (44)
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Ilustration of the way in which a high-order field distribution can cause an incorrect low value to be found for WMAX, the normal-

ized resonant frequency at infinite electron density. Also either Fig. 2(a) or (b) illustrates an initial field distribution that will cause
perturbation theory to predict too small a frequency shift for a given density. (a) No plasma. (b) E(R)=0.. W<WMAX. (c) E(R)=0.
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Fig. 3. Example of calibration curve which can be produced by

initial field distribution such as that in Fig. 2(a) or (b). Note that
perturbation theory predicts too small frequency shift for low
densities.

where
o= J1(oR) (45)
Jo(7sR) + ¢;V1(hsR)
co = ]1(h3Q) + ¢ Yl(hSQ) (46)

o J1(heQ) — a1 Vi(hoQ) .

Although the exact calculation usually approaches
the perturbation-theory asymptote from below (as will
be shown later), for high-order modes it may occa-
sionally approach from above. Consider a cavity whose
field distribution without plasma looks like Fig. 2(a).
As the plasma density increases and forces the fields out-
ward, the integral of ¢E? in the glass will decrease. Thus
the denominator of (40), which uses the unperturbed
field, will be too large, and the perturbation-theory
value of Aw will be smaller than the exact value. The
resulting situation is shown in Fig. 3.

Main Loop (Cards 1770-2310)

Equation (29) is solved for w, ,zia1/wo? at each of
NINT uniformly spaced frequencies between FIWWG and
FRANGE. The first frequency chosen is FREQ = FIWG
+(FRANGE-FWG)/NINT and the last is FREQ
=FRANGE. If no root can be found, the calculation
terminates. This condition will most often be due to the
specified frequency shift exceeding the value that would
result from infinite plasma density, or approaching it
closely enough so that (w,_axia1/wo?) > 1000.

For each frequency specified, subroutine ROOT
varies the normalized axial plasma frequency [go in
(22), called G(1) in the program] until ZFUNC=0.
Subroutine ZEROTE is used to compute ZFUNC.

If K different plasma-distribution shapes have been
specified by the input data, this root-finding procedure
is carried out K times at each frequency.

Compute and Print WMAX (Cards 2330-2470)

As a check on the exact calculation of frequency shift
versus plasma density this program segment calculates
the frequency shift when the plasma is replaced by a
perfectly conducting post. From (14), it can be seen
that the condition E(R) =0 requires

Jl(}lgR) + C3 Yl(th) = O (47)

Subroutine CCOMP calculates the value of the left side
of (47) for any given W, and subroutine ROOT is used
to vary W until, at the solution WMAX, the wvalue
comes out 0. WMAX should be the high-density asymp-
tote of a plot of (w,2/we?) versus (w/w,); this will be
illustrated in Fig. 5.

Fig. 2 illustrates a difficulty which arises in this pro-
gram segment when high-order modes are being consid-
ered. The boundary cordition E(R)=0 can be met for
frequencies substantially below WMAX; i.e., for non-
infinite conductivities. To avoid these spurious solutions
to (47) it is necessary to estimate rather closely the

- region in which the true root should be sought.

An upper limit to the region is obtained by treating
the space between the plasma post and the cavity wall
as a two-dimensional box whose resonances can be com-
puted simply:

¢ 7 \2 o \2

fa=gt/ (5)+(7)

where w is the width of the box (the distance from the
plasma post to the cavity wall) and L its length (equal
to the length ! of the cylindrical cavity). If N1 is the
radial order of the mode being studied and P1 its longi-

tudinal order, the upper limit used will be fivir1),r1.
The region’s lower limit is taken as the highest fre-

(48)
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Fig. 4. Illustration of some disagreeable properties of ZFUNC.

quency for which the main loop of TECAYV was able to
find a corresponding electron density. If the control
data supplied to TECAV specify a small value for
FRANGE, this lower limit may not be stringent
enough; a false root may occasionally be found, as illus-
trated in Fig. 2.

End-of-Program Routine (Cards 2490-2550)

After all requested data points have been computed,
the program returns to its beginning to seek another set
of data cards. This feature can be used to calibrate more
than one cavity on a given computer run, to calculate
data points for one given cavity with variable spacing
(e.g., every 10 MHz for the first 200 MHz, then every
50 MHz for the first 1000 MHz), or to handle more than
the allowed five different plasma-distribution shapes. If
the program finds no additional data cards, it prints a
message and stops.

Subroutine ROOT (Cards 2570-3650)

For any given function (computed by the arbitrary
subroutine SUBR), ROOT seeks a value of the abscissa
PARAM which reduces the absolute value of the func-
tion below a specified size. The routine begins by search-
ing from BOTTOM to TOP for two values of PARAM be-
tween which the computed function changes sign; then
homes in on the root by a binary search. The methods
used are inelegant and rather slow, but they generally
work despite the inhumane behavior of ZFUNC.

To understand the difficulties which this routine
faces, consider the sketches in Fig. 4, which illustrate
that the root of ZFUNC is often preceded by a pole. To
a routine which simply looks for a sign change between
two values of the abscissa, a simple pole and a root are
indistinguishable. ROOT therefore tests successive
ordinate values near a supposed root (cards 3380-3410)
and rejects as poles the cases in which the ordinate in-

7

creases in magnitude as the “root” is approached. If a
pole is found, the subroutine makes one more attempt
to find a true root before giving up (cards 3430-3600).

The first problem illustrated by Fig. 4(b) is that the
true root of ZFUNC often lies very close to a pole. If
the initial search for two abscissas, between which
ZFUNC changes sign, is conducted by stepping in large
intervals from BoTTOM to TOP, the sign change at the
desired root can be missed entirely and the program
winds up locating the false root instead. The 64-point
initial search pattern used in TECAV’s subroutine
ROOT (cards 2810-2900) usually suffices to avoid this
difficulty. At large frequency shifts or for high-order
modes, the routine does occasionally fail.

To cope with this problem, we have provided in
TMCAV an alternate, interchangeable version of
ROOT (cards TM 2220-3010) which conducts its initial
search for a sign change by scanning from BOTTOM to
TOP in 4096 steps. A scan this small is time consuming
(total program time typically goes up by a factor of 2
to 4), but very rarely misses a root.

A false root can generally be detected in the output
data by a discontinuous jump in a plot oflog (w,2/wy?)
versus log (Aw/wg), or a failure of the plot to approach
the perturbation-theory asymptote at small Aw.

Once a root has been isolated it is refined by binary
search (cards 3210-3360). The dotted line in Fig. 4(b)
illustrates why more sophisticated techniques fail (in
this case Newton’s method); an attempt to approximate
the true root by fitting a tangent or a low-order poly-
nomial to a known segment of ZFUNC will often cause
a jump onto the wrong branch of the function. Methods
which avoid this jump by using starting values that
bracket the root generally seem to converge more slowly
than the binary search. We attribute this to the very
rapid approach of ZFUNC to zero when a pole is
nearby.

The variable IER is used by ROOT to signal the main
program if no root is found. The value of JER is then
printed out by the main p‘rogramL The most frequent
usage is the statement “IER=1" which appears in the
output list when the value of (w,?/w?) exceeds 1000, and
is therefore outside the range being searched. Cards
2640-2680 detail the possible values of TER.

Subroutine ZEROTE (Cards 3670-4260)

This routine computes ZFUNC according to (29).
Enough terms of the infinite series are kept so that the
last two terms retained each contribute less than one
partin 100 000 to ZEUNC. Several hundred terms may
be required for large frequency shifts and high-order
modes. Double-precision arithmetic must be used to
avoid intolerable roundoft error in such a long computa-
tion. Generally, of course, 15 or 20 terms of the series
are entirely adequate.

Since the amplitude of E is arbitrary in the calcula-
tion of resonant frequency, the value of T is arbitrary.
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Fig. 5. Calibration curve for a typical TE cavity. Parameters of
the cavity and values of the power-series coefficients used to
represent the radial density variation are given in the data card
specifications. Points on curve are from the sample output.

The value of 1073 has been selected to minimize the
number of occasions of computer overflow during the
calculation of the T',. If for a particular rare cavity
either underflow or overflow occurs, the values of the T
may be scaled by adjusting 7'y (card 3840).

Note, in comparing the computer programs to the
mathematical derivations above, that Fortran's peculi-
arities require our designating 7'y as 7 (1) in the program.

Function BESSEL (Cards 4670—-5870)

Because TECAV spends a lot of time computing Bes-
sel functions, it proved worthwhile to write a customized
routine instead of using IBM’s general-purpose library
routine. The chief virtue of this subprogram is that it
does no unnecessary work when called upon for several
types of Bessel functions of the same argument. Its
accuracy is on the order of one part in 10°.

Subroutine SIMPQ (Cards 5890~6220)

This routine integrates any given function by Simp-
son’s rule using a progressively finer grid of data points
until two successive computations differ by less than
one part in 108 If the integration has not reached this
accuracy by the time a 2048 point grid is used, the rou-
tine gives up, returns its latest computed approximation
to the integral, and sets an error signal.

IV. EXAMPLES AND APPLICATIONS

Fig. 5 shows the output of a computer run for a par-
ticular TEg;; cavity. For this run we set FRANGE
=9698.5 MHz and NINT =50 MHz. Observe that the
exact calculation does approach the asymptotes pro-
vided by WMAX and perturbation theory. The job
took 29 s of real time to run on the University of Illi-
nois’ time-shared IBM 360/75, and cost 2.75 dollars. To
get this short operating time, it was essential to use an
efficient compiler (in this case IBM's Fortran H, option
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Fig. 6. Electron density decay in an afterglow plasma in 10-torr
neon. 4 and B—TE and TM cavity data, respectively, assuming
a diffusion distribution. C—TE and TM cavity data assuming
a recombination distribution.

2, level 18) to prepare the object deck used, even at the
price of long compilation time. The importance of an
efficient object program becomes extremely clear for
high-order modes and large frequency shifts, which can
require several minutes to calculate 50 data points.

As shown in Fig. 5, calibration curves were generated
for two assumed electron-density distributions. If this
procedure is repeated for different cavity modes, then
by comparing the experimental frequency shifts ob-
served on different modes with the calibration curves,
one can, within reason, obtain a very good indication of
the plasma distribution. An example of this is shown in
Fig. 6 [9].

In this particular experiment it was desired to find the
form of the plasma distribution in a decaying afterglow
produced in 10-torr neon. Frequency shifts, as a func-
tion of time in the afterglow were recorded for TMo1o
and TE,; cavities, and the axial electron density was
calculated from the calibration curves for two different
assumed distributions: the J, (diffusion-controlled) and
the uniform (recombination-controlled) distributions.
As can be seen from Fig. 6, excellent agreement was
obtained for an assumed uniform distribution, which
indicated that this plasma was recombination con-
trolled, as expected.

If the plasma distribution is reasonably well behaved,
then this approach is convenient and effective. A similar
approach has been examined by Kent et al. [10]. If,
however, the plasma is doing strange things, this tech-
nique would not work well. In general, of course, if the
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frequency shifts are known for a large number of cavity
modes, it would be possible to invert the data (similar
to Abel inversions) to obtain the distribution. This
technique is difficult to apply, however, and requires
some sophisticated analysis.

V. CoLLISIONS

The programs described above assume a lossless
cavity and a collisionless plasma, approximations which
have thus far been adequate for our needs. If it proves
desirable to take collisions into account, it should be
straightforward to do this by using the definition of Q.

total energy stored in cavity
(49)

= 4T
energy lost per period

2wfeE2 dv
faE2 dv

If we use the Lorentz formula for the conductivity of a
plasma (Shkarofsky shows that the Lorentz formula
can be doctored to give useful results even if » depends
on velocity [11]), (50) leads to the formula

2wfeE2 dv

Vm
f———— €owp?E? dv
Vm2 __I_ CO2

The appropriate fields to use here are not the unper-
turbed fields, but rather the “exact” fields available in
ZEROTE (or ZEROTM) as the series 7. Spatial vari-
ation of v, and w,? can easily be taken into account since
the integral would be performed numerically in any
event. : .

Several points must be argued to justify this ap-
proach. First, the addition of collisions must not result
in fields very different from the collisionless approxima-
tion. This is probably a reasonable assumption so long
as (/w)?<0.1. Second, we know that in the high-density
regime where these programs are most useful, the cavity
fields are significantly perturbed, which will change the
cavity losses due to wall resistivity and stray radiation.
However, a few sample calculations will show that
whenever densities are high enough to force a typical
cavity out of the perturbation-theory regime, the
plasma losses will generally be high enough to produce
large changes in Q and entirely mask other loss effects.
Third, it must be emphasized that (51) predicts un-
loaded Q. The effects of loading by the circuits coupled
to the cavity may change when high-density plasmas
perturb the fields. Changes in coupling must be ob-
served in order to correctly deduce unloaded @ under
dynamic conditions.

or

Q= (50)

Q= (1)

.29

We offer, finally, a speculation about a simple but
unproven method of dealing with collisions. The per-
turbation-theory formula for Q corresponding to (40)
and (41), assuming collision frequency »,, to be position
independent, is [6]

f éowp2E02 dv
V@

1
A<6>=w2+vz 52
" f eEo? dv
Combining this with (40) and (41) gives
1 m A
A<—>=-—zf——3 (53)
Q/ w Wy

so that v, can be obtained from measurements of fre-
quency and Q without evaluating any integrals. We spec-
ulate that perhaps (53) or an equally simple formula
may continue to hold at high densities even though
neither Aw nor A(1/(Q) may be obtained from the
perturbation formulas. This would make it possible to
compute collision frequency with no recourse to numer-
ical integration, even at high densities.

VI. CoNCLUSIONS

A description and listing are given for computer pro-
grams that provide efficient accurate calibration curves
for microwave cavities used in plasma diagnostics. The
program is based upon the exact solution of Maxwell’s
equations, and so can take into account the effect of the
discharge tube and can provide accurate plots of res-
onant frequency versus plasma density for a range
from zero to essentially infinite electron density. These
plots can be made for fairly arbitrary dimensions of the
cylindrical cavity used and for a large variety of pos-
sible cavity modes, as well as for a large variety of pos-
sible plasma profiles within the discharge tube.

Although the computer program gives accurate re-
sults, some remarks are in order regarding the care that
must be taken in obtaining and interpreting the experi-
mental results, as well as some of the common problems
that occur in the use of this technique. First of all, the
accuracy in determining the plasma density depends
greatly on the accuracy in determining the resonant fre-
quency of the cavity. For this reason it is essential that
the cavity Q be as high as possible and the discharge
tube be made of low-loss glass (quartz or 7070 Pyrex).
The effect of small errors in the frequency shift can be
especially severe for large plasma densities, as can be
clearly seen in Fig. 5. Another problem that occurs at
large electron densities is that this is also quite often the
region of high electron-collision frequency (electron—
ion as well as electron—neutral). This decreases the Q of
the cavity, broadens the resonance, and makes the
determination of the exact resonant frequency difficult.
In fact, if the collision frequency is high, the resonances
may be completely washed out. Needless to say, this
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also suggests that considerable care must be taken in
coupling the cavity to the measurement system. A
tradeoff will have to be made to keep the coupling as
loose as possible to preserve the high Q while retaining
sufficient coupling to obtain a readable signal.

Microwave cavity techniques have been used widely
in pulsed (decaying afterglow) plasma studies where the
plasmas are usually quiet and well-behaved. If a plot of
density versus time in the afterglow is to be obtained,
then it is necessary that the plasma conditions be
repeatable from pulse to pulse. In dc discharges many
more problems arise. Due to the high electron temper-
atures, the collision frequencies in such discharges are
usually large and can wash out the cavity resonances.
Furthermore, the fluctuations, striations, etc., that are
commonly found in dc discharges, as well as the micro-
wave radiation directly into the cavity and the possible
excitation and interaction of plasma modes, can con-
tribute an excessive amount of noise to the detector sig-
nal and can make meaningful measurements impos-
sible. Under such circumstances, it is sometimes pos-
sible to crowbar off the discharge for a short period of
time, make measurements in the afterglow, and extrap-
olate back to the switch-off time to obtain estimates of
the plasma density.
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Automatic Digital Method for Measuring the
Permittivity of Thin Dielectric Films

MARIA A. RZEPECKA, MEMBER, IEEE, AND M. A. K. HAMID, SENIOR MEMBER, IEEE

Abstract—One of the most promising techniques for measuring
the electric permittivity at microwave frequencies of thin dielectric
materials of the order of 0.1 to 10 ym, is the cavity perturbation
method. For thin films of this type, it is necessary to determine ac-
curately and display small changes in the resonant frequency and Q
factor of the cavity in the presence of the material sample.

A circuit for the simultaneous measurement and digital readout
of the resonant frequency and Q factor of microwave cavity is de-
scribed. For the resonant frequency measurement, a very efficient
automatic frequency circuit, with a homodyne modulation-detection
bridge and frequency stabilization loop, is applied. Theoretical
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analysis and experimental results with this circuit show that an ac-
curacy of 5X10~7 can be achieved in the resonant frequency mea-
surement.

For measuring the Q factor, two similar circuits are described.
The technique is based on measuring the phase shift of the envelope
of an amplitude modulated microwave signal when this signal is
transmitted through a resonant cavity at resonance. Although an
accuracy of 0.5 percent in the Q factor can be achieved, it is shown
that the main limiting factor in both circuits is the accuracy of phase
shift determination at RF frequencies.

I. INTRODUCTION

HE permittivity of thin dielectric films has been
Tof increasing interest due to its importance in the
properties of semiconductor thin films and inte-
grated circuits at microwave frequencies. More recently,
the properties of thin biological films have received con-



